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PREFACE

The research described here was performed for the National
Aeronautics and Space Administration, and deals with the APOLLO
Mission Reliability Assessment Study. In this Memorandum, the
author uses Bayesian analysis to specify parameters of a prior
distribution for two cases: (1) reliability of a unit that
either performs satisfactorily throughout a mission or does
not, and (2) failure rate of a unit that fails according to
the exponential distribution. Prediction of demand for spares
is considered in each case. The cases can be read independently.

An estimate of reliability is the posterior mean. Alterna-
tively, the posterior distribution can be used to obtain a (sub-
jective) confidence interval for reliability. The posterior
distribution is also useful in a decision-theoretic approach
to resource allocation for maximal system reliability; such a
study is planned as a sequel to the present work.

This Memorandum should be of interest to those working on
reliability estimation; allocation of investment among system
components to achieve maximum system reliability; and stockage

applications.
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SUMMARY

This Memorandum specifies the parameters of a prior distribution
for two cases: the reliability of a unit that either performs satis-
factorily throughout a mission or does not; and the failure rate of a
unit that fails according to the exponential distribution.

Bayesian analysis is an obvious approach in estimating reliability
parameters from mixed data sources such as: (1) test results; (2)
information on analogous components; and (3) engineering estimates.
The prior distribution, of necessity subjective, is (ideally) based
on (2) and (3) alone. Test results are then merged with the prior
via Bayes' rule to obtain a posterior distribution. Roughly, the
spread of the prior distribution is inversely proportional to the
degree of prior belief, and determines how heavily it will be weighted
when combining it with test data.

A topic that most writers on Bayesian analysis avoid is how to
specify the parameters of the prior distribution based on (2) and (3).
We give a method for specifying these parameters that requires only
information corresponding (i) to the most likely value of reliability
and (ii) to the subjective odds that the error in this estimate is
less than a given percent. We have computed tables of parameters of
the prior distribution corresponding to these subjective inputs.

These appear in the Appendix.

As an application of Bayesian analysis, we consider prediction

of demand for spares in both the GO NO-GO and constant failure rate

cases,
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1. SPECIFYING THE PARAMETERS OF A PRIOR DISTRIBUTION FOR
RELIABILITY OF A GO NO-GO UNIT

Suppose we have a unit that works with probability p but that
the precise value of p is unknown. If we were totally ignorant about
the value of p, then our prior belief would be reflected by a uniform
distribution over [0,1]. However, intuition tells us that total
ignorance is an anomaly; that is, our prior distribution is really
not flat. A smooth, unimodal prior distribution having support (0,1)
with peak over what we believe to be the most likely value of p seems
appropriate. In addition, the beta distribution is a natural con-
jugate [5] prior distribution; i.e., the posterior distribution is
again a beta distribution (with parameters transformed according to
Bayes' rule). The beta density with positive parameters (a,b) is

given by

cp? ta-pPt, 0<p <
(1-1) B(P|a:b) = ’

0, elsewhere
with ¢ as a normalizing factor. The mean and variance are, respectively:

(1.2) p = a/(atb),

(1.3) o® = ab/[(a+b)i(a+b+1)],

and, for a, b > 1, there is a unique mode at
(1.4) 8 = (a-1)/(a+b-2).

After observing test data, say a sample with m successes and
n failures, the posterior density is B(p]é%nu>b+n) from the Bayes'
rule relation: posterior density = prior density x likelihood function
x a normalizing factor independent of p. As more test data are observed,

the posterior distribution is updated., (The updating procedure is valid



only if all units are stochastically identical. If, for example,
design changes are made, as a result of failure mode analysis, a
new prior distribution should be constructed from scratch).

It remains to specify the parameters (a,b). The procedure we
give is heuristic and, while not the simplest mathematically, uses
information that corresponds to subjective notions.* For example,
one is less likely to have a feel for the variance of the prior
distribution than for the error in his estimate of the most likely
value of p. Of course, if we were interested in psychological con-
sistency, we could ask for an estimate of the variance as well --
but we shall ignore such considerations here. If the designer/
engineer being asked these questions has seen any test data, it is
probably impossible for him to ignore them. Therefore, in this
case, it is suggested that the prior distribution be based on all
information the designer knows. On the other hand, if the designer
has not seen any test data, this is all to the good; test results
are then accounted for in the posterior distribution. Whenever
possible, the parameters of the prior distribution should be speci-
fied before any tests are performed.

Suppose that our subjective assessment of the most likely value**

of p is p; then we set

(1.5) (8-1)/(a+b-2) = p.

* ~ »
For example, if ﬁ and ¢ were subjective estimates of the mean

and variance, respectively, of the prior distribution, then solving
the equations (1.2) and (1.3) yields

~ A'2 52 A~ A
a=g" " B4 -4

b

5 aa-p? - a-p.

**The analysis of the case where one estimates the mean rather
than the mode is analogous. We give no details for the former case,
except that numerical results for both cases are given in Tables 1
and 2 in the Appendix.



Next, we ask what odds we would give that the true value of p lies
in (p-kp, p+kp), where 0 <« k < 1. For example, if k = .1, then

we ask what the chance is that the error in our estimate is less
than 10 percent. Suppose that the subjective odds are x to y;

then, setting v = x/(x+y), we have

B+kp
(1.6) .[ 3(p|3,g) dp = v.
B-kp

Thus, to find a and S, it suffices to specify 6, k, and v. 1If
the views of several people are solicited, it is suggested that the
decision-maker take weighted averages, the weights {ai} depending
on the technical backgrounds and personalities of the people in-
volved. Some may be conservative in their estimates, while others
are optimistic. It is suggested that in asking the questions the
decision-maker fix the value of v. If person i responds (ﬁi,ki),
then f = Eoiﬁi/ZQG and k = zaiki/zaj'

Equations (1.5) and (1.6) can be resolved by using the tables
of the incomplete beta function [3], but to expedite matters we
have provided a table of (;,ﬁ) in the Appendix corresponding to

selected values of (u,v,k), where u = ﬁ;

Defining
(t-1)
min(l,u(l+k)) E—:——- .
P 1-u (1-p)* 1 dp
(1.7) p(t;u,v,k) =v - ui1-k)

1 u!t-lz
) l-u (1-p) " dp
0

and

(1.8) ¢(g(u,v,k);u,v,k] = 0,



it follows from (1.5) and (1l.6) that

= g(p,v,k),

o'

(1.9)

(4

(1.10) = [p(b-2) + 17/(1-p) -
A uniform prior is suggested, if there is not enough prior information
to quantify sensibly; however, it 1s felt that introspection will

generally reveal the contrary.

In base stockage application [2], appropriate levels of spares
inventory must be determined. To provision spares properly, an
estimate of the demand distribution is required. For this, the
Poisson approximation may be useful. Assuming that p is near one
and the sample size n (say, aircraft landings or space vehicle
launchingé) is large, the probability of k failures,* corresponding

to demands for spares of a given type, is closely approximated by

(1.11) £(k|p,n) = [n(1-p)]k e (1P sy
Removing the conditioning on p, the demand distribution is

1

(1.12) g(k|a,b,n) = -I. f(k|p,n) p(p|a,b) dp.
0

An approximation to g(k]a,b,n) is obtained by using the mean of the
prior distribution [a/(atb)] in place of p in (1.11). We do not

know how good this approximation is.

*We assume that the failure distribution over successive missions
is geometric (i.e., no memory). The part in question is assumed stressed
(used) exactly once per mission -- or, with obvious modifications, twice
per mission. If it is stressed continuously, the results of Sec. 2 can
be applied; of course, if all missions have the same length, we get a
reduction back to the case considered here.



*
If the distribution of n, say ¢(n), is known, then the distri-

bution of the number of failures is

(1.13) h(k|a,b) = P _g(k|a,b,n) ¢(n).
n

To the author this indirect route to demand prediction seems preferable
to a direct attack because the former is more physically motivated.

A device sometimes used is to inflate the estimate of demand
deliberately in order to cause a larger provisioning of buffer stocks,
with the object of reducing the incidence of stockouts due to demand
fluctuation. The author feels that the approach outlined in the next
paragraph is more rational.

With an unbiased estimate of demand, the proper inventory level
can be determined by a decision-theoretic approach. Let L(k,s) be the
loss when k units are demanded and s units are stocked.** The minimal

expected loss L° is

(-]
(o]

(1.14) L7 = min E L(k,s) h(k|a,b) .
k=0

Minimizing L(k,s), where k is the estimate of mean demand, may be

grossly incorrect.

*Predicting n via a Bayesian approach -- perhaps in conjunction
with spectral analysis of time series -- may be appropriate. This
involves simply one more conditioning-unconditioning in (1.13). Since
the values of n over successive time periods may be autocorrelated,
spectral analysis may be useful in finding a suitable parametric form
for the distribution of n. For a treatment of spectral analysis, see
Yaglom [67.

*%
For example,

L(k,s) = c, s + ¢

1 2 max(0,s-k) + ¢

3 max(0,k-s),

where c¢; is the unit purchase cost, o is the unit holding cost, and
Cy is the unit stockout cost.



2. SPECIFYING THE PARAMETERS OF A PRIOR DISTRIBUTION FOR
FATLURE RATE

Suppose that a unit has constant failure rate g, fixed but
unknown. We assume a (natural conjugate [57) prior distribution

with density of the form

(2.1) g(0]a,b) = a® ¢° ! e 2%/pr(hy,

where the parameters (a,b) are to be specified. Its mean and variance

are.;
(2.2) u = b/a:
(2.3) o® = b/a2,

respectively. There is a unique mode at (b-1)/a, b » 1, but it is
felt that the mean time to failure is more amenable to subjective
assessment in this case.

If the subjective estimate of the mean time to failure is 9,

then using (2.2) we set
(2.4) b/a = 1/v.

Based on subjective odds, let v be the chance that the failure rate

exceeds k/y. This yields

(2.5) g(ola,b) de = v.
k/9



Equations (2.4) and (2.5) could be resolved by using tables of the

*
incomplete gamma function [47], but this would be a tedious job.
To save time, for selected values of k and v, Table 3 of the Appendix

provides the corresponding ﬁ, where

(2.6) a = hy,

(2.7) b =h.

Defining
o

*%

(2.8) §(h;k,v) =v -I g(e|h,h) de,
k

(2'9) 6[p(k,V) ;k,V] =0 ’

we see that

*
If we had used a subjective estimate, say 82, of the variance
of the prior distribution instead of (2.5), then using (2.3) and (2.4)
we would have the explicit expressions

8 = 1/58°
£ = 1/(58)°.

However, it is felt that intuition for 02 would be poor.

**Note that
f g(e|h,h) dg = I'(h,hk)/T'(h,0),
k

where

I'(a,x) =f e-u ua-l du.
X

A standard subroutine for computing I'(a,x) is available.



(2.10) h o= g(k,v).

In specifying the parameters of the prior distribution, we refer
to the suggestions given in Sec., 1 for handling data already on hand.
Failure data (except that used in forming the prior distribution) are
incorporated in the posterior distribution by Bayes' rule. Having

observed failures at ages t sees B and a nonfailed group with
*

1)

ages t .y tm, the posterior density 1is

K+1® " °

m

g(ela +Zti,b+k).

i=1

This gives us our current prior distribution, which is updated as more
observations are recorded. 1If, for example, the unit corresponding to

tj’ j > k, fails at t”, updating yields

m

g(ola +Z g, + (t'-tj), b+k+1).

i=1

We now give an application to demand prediction. Suppose each of
n units operates continuously until failure, at which time it is
replaced instantaneously (for practical purposes) by a unit as good
as new. These failures generate the demands for spares and/or repair.
If each unit has constant failure rate g, the probability of k demands
in time T is p(k]neT), where
k

(2.11) p(k|n) = A" e Mk

* o™
If the failure distribution were l-e ox (Weibull with known
shape parameter ), replace ti by ti, i=1, ..., m



that is, demand is Poisson with rate ng§. Removing the conditioning

on §, the probability of k demands is

(2.12) f(k‘a:b9n)T> = f P(klneT) g(ela:b) de.
0

If n and/or T is a random variable, we can further uncondition in a

similar manner.

REMARKS. If, in fact, the life distribution of the jth unit has mean

uj and is nonlattice but not necessarily exponential, then [1], with

the stationary demand distribution becomes p(klneT). If planned
replacement takes place at age rt, the same result holds if we replace

uj by the mean of the distribution truncated at y. (In a more sophisti-
cated replacement policy, the planned replacement age should ideally
depend on the current inventory level.) If replacement can take a
significant amount of time (due, for example, to stockouts or non-
negligible repair times), then the replacement time distribution should
be convolved with the failure distribution, and the mean of the result-

ing distribution used in place of uj'

For aircraft spares provisioning, a somewhat different model of
the demand process may be appropriate. Suppose that a part, used only
when the aircraft is flying, has constant failure rate g during flight*
and failure rate 0 on the ground. ZLet flights to the base originate

from points {1, ..., m}, with respective flying times {wl, N wm}.

*
See Sec. 1 for the case where the unit is not stressed continu-
ously during flight.
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During a period of length T, let n, be the number of flights to the

base from point 1. The probability of k demands during time T is

n, ki ni-ki
(2.13) D(k|T) = E K, Jvy -vp) >

1

(kl,...,km)esk
where
-ewi
(2.14) Vi = l-e »
m
(2.15) Sk={(k1,...,km):§ ki=k}.
i=1

If all the vi's are near 0 and all the ni's are large, then we have

the Poisson approximation

m
(2.16) D(K|T) w p(k\z nivi) :
i=1

When the ni's and @ are unknown, we condition and then uncondition

in the usual way. If @ has a prior distribution g(e‘a,b) given by
(2.1), then




-11-

APPENDIX

In this Appendix we give tables of parameters of prior distri-
butions corresponding to subjective assessments of reliability, as
described in Secs. 1 and 2. The entries in the tables were computed
using a program written by Mrs. Sarah Higgins, with the assistance of
Robert Mobley and the author. Several test cases were computed by
hand (using tables) for each program, with agreement to more than
four significant figures throughout. The programs are believed to be
completely debugged and are listed here for the convenience of those
who may want values that are not tabulated. Tables 1 and 2 refer to
Sec. 1 (beta prior). Table 3 refers to Sec. 2.(gamma prior). Aster-
isks in the tables indicate that the rootfinder did not locate a root

within the allotted time.
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Table 1

PARAMETERS OF BETA PRIOR DISTRIBUTION FOR SELECTED VALUES
OF u, v, AND k

A Priori
Estimates Mode Mean

u v k a b a b
.9 .5 .1 5.510 1.501 15.311 1.701
.075 8.995 1.888 18.856 2.095
.050 19.067 3.007 29.012 3.224
.025 73.625 9.069 83.657 9.295
.671 .1 11.233 2.137 21.405 2.378
.075 18.352 2.928 28.576 3.175
.050 39.311 5.257 49.576 5.508
.025 * * 163.424 | 18,158
751 .1 15.862 2.651 26.222 2.914
.075 25.727 3.748 36.173 4,019
.050 54.915 6.991 65.395 7.266

.025 * % * *
951 .1 50.195 6.466 61.012 6.779
075 80.184 9.798 91.500 | 10.167
.050 | 165.106 ) 19.234 | 176.772 } 19.641

.025 * * * *
.99 .1 90.232] 10.915 | 101.161 | 11.240
075 } 145.467 | 17.052 | 157.047 | 17.450

.050 * * * *

.025 * * * *
.95 .5 .1 5.910 1.258 25.348 1.334
.075 7.954 1.366 27.555 1.450
.050 12.165 1.588 32.062 1.687
.025 39.270 3.014 59.320 3.122
671 .1 10.828 1.517 30.424 1.601
.075 15.145 1.744 34.972 1.841
.050 24.645 2.244 44.926 2.365
.025 80.430 5.181 } 100.846 5.308
.75) .1 14,503 1.711 34.177 1.799
.075 20.667 2.035 40.602 2.137
.050 34.680 2.773 55.141 2.902
.025 | 112.251 6.855 | 132.911 6.995
.951 .1 39.402 3.021 59.307 3.121
.075 59.151 4,061 79.382 4,178
.050 |107.748 6.618 1128.632 6.770
,025 [339.228 | 18.801 |361.167 |19.009
.991 .1 67.365 4.493 87.362 4,598
.075 |102.944 6.366 |123.272 6.488
.050 |192.310| 11.069 }213.312 |11.227

. 025 * * * *
.975 .5 .1 6.239 1.134 45.458 1.166
.075 8.411 1.190 47.710 1.223
.050 12.734 1.301 52.197 1.338
.025 25.695 1.633 65.637 1.683
671 .1 10.689 1.248 49.979 1.282
.075 14.711 1.352 54.111 1.387
.050 23.166 1.568 62.790 1.610
.025 51.772 2.302 92.096 2.361
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Table 1 -- continued
A Priori
Estimates Mode Mean

u v k a b a b
.9751.751 .1 13.847 1.329 53.174] 1.363
.075 19.258 1.468 58.709] 1.505
.050 30.927 1.767 70.631] 1.811
.025 72.607 2.836 113.105] 2.900
.951.1 33.943 1.845 73.393] 1.882
.075 48.848 2.227 88.461} 2.268
.050 83.263 3.109 123.202] 3.159
.025 [223.049 6.694 263.966| 6.768
.99 1.1 55.718 2.403 147.780] 2.442
.075 81.364 3.061 167.4031 3.104
.050 [141.906 4.613 181.930} 4.665
.025 [396.793 | 11.149 437.834|11.227
.99 .5 .1 6.441 1.055 105.529] 1.066
.075 8.695 1.078 107.815] 1.089
.050 13.190 1.123 112.374] 1.135
.025 26.601 1.259 125.981] 1.273
.67 1.1 10.592 1.097 109.706] 1.108
.075 14.423 1.136 113.580] 1.147
.050 * * 121.496 1.227
.025 47.093 1.466 146.599] 1.481
.75 1.1 13.437 1.126 112.565} 1.137
.075 18.381 1.176 117.556} 1.187
.050 28.610 1.279 127.882] 1.292
. 025 62.041 1.617 161.611] 1.632
.95 1.1 30.642 1.299 129.821} 1.311
.075 42.607 1.420 141.851] 1.433
.050 68.396 1.681 167.770] 1.695
.025 [160.581 2.612 260.346] 2.630
.99 1.1 48.573 1.480 147.780) 1.493
.075 68.123 1.678 167.403] 1.691
.050 J111.020 2.111 210.442] 2.126
.025 P69.774 3.715 369.615] 3.733
.999 | .5 .1 6.565 1.006 |1005.572] 1.007
.075 8.871 1.008 }1007.881] 1.009
.050 * * 1012.496] 1.014

.025 27.293 1.026 * *

.67 1.1 10.530 1.010 * *
.075 14.241 1.013 |1013.255] 1.014
.050 * * 1020.678] 1.022
.025 44,127 1.043 |1043.174) 1.044

.75 1.1 13.186 1.012 * *
.075 17.842 1.017 (1016.857} 1.018

.050 * * * *
.025 55.493 1.055 |1054.545] 1.056
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Table 2
PARAMETERS OF BETA PRIOR DISTRIBUTION, VARYING u
(v =.5k=.2)
A Priori -
Estimate Mode Mean
u a b a b
. 990 3.049 } 1.021 102.089} 1.031
.991 3.055 ]11.019 113.201 1 1.028
.992 3.0601]11.017 127.091 | 1.025
.993 3.066 ]1.015 144.950 1 1.022
.994 3.072 }11.013 168.762 | 1.019
.995 3.078 | 1.010 202.097 | 1.016
.996 3.083 11.008 252.099 1 1.012
. 997 3.089 {1.006 335.434 | 1.009
.998 3.095 | 1.004 502.103 ] 1.006
.999 3.100 }1.002 {1001.997 ]| 1.003
Table 3

PARAMETERS OF GAMMA PRIOR DISTRIBUTION FOR

SELECTED VALUES OF k AND v

k v h
.11.5 *
.67 .3683137
.75 .4964839
.90 .9725192
.51.5 .5602821
.67 | 1.4046943
.75] 2.1610065
.90 5.3209309
.91.5 3.2660242
.67 *
.75 *
.90 *
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GU TH Ry
X2=FPRT

G0 TN 50
Ri==1.0

ASSIGN & T} wN
GO TN K
XUSFPRT

RTal.0

ASSIGN 5 TN NN
X1=FPRT i
RT=0,0

ASSIGN A TN NN
Gi) T 80
X2aFPRT
H==1,9
Nzx=,§
D=l LU+
RI=(XOXDED) = (X1500RND) + { X2%{N+1)) )
NEMSRIRR[=(4,08X2%03D1) ) % { XD&D={ X1 *DD)+X?)
IF (HDENY36,36,51
DENS .0

NENESORT (HEw )
NNsB +DEN
Dmer [=NEN
¥ (AHS(DN)-AHS(UM))57,57,56
NENSNN

LLIPNR (TN 1.
NE =N
IF (DFEN)S554+54,45%
DENEY 0
Nlx(=2,0%X2801))/NEN
Ha] %k
RI=rT+H

60

61

62

IF (ARSUH/RTY=14,UFE=6)T75,75,60
ASSIGN 7 TH NN

GN TN 80

IF (ARSIFPRT)=ASS(X2%10,0) 162461561
Di=NI*,5

Hab®eb
RT=kT=H ’
GO TN 80

X0=X1
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SHOROOT O
w(HOSN A
WY RA)Y
1ODANTO0
IO ED B RN
“OOROT 20
A0~ 0] 30
RO LETHE R AT
HEHNRDIS 0
AORNY AG
O AT 0
ERLET RS
“ONKROGTIY9O
H00R0200
HHOR0210
WOHO2 20
WOORO23n
wONB) 241)
4080250
HGORN2 AL
WONHO2TO
WODHN2KOD
<SONRO290
WO(Hs0300
EHLEG R
WODKHY20
HMONHO330
HpDHN340
“P0RBO3IS N
WOKOI AL
1080370
WOIRO3RG
RAULIVER W
w{IRO4H)
HW{ORNAT
AQOHN4 2D
WONKONG30
HONHOL4Y)
HDOHOGS O
080460
HO0ORDGT
HOORNLGHND
AOGOKOL90
S0080500
oO0OHISY0
H0040%2(
WOOKNHIO
€OOB0S540
HOOB0S550
HOOB0% A0
WHOORNRTU
JODARDS N
RONGELETIE
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Inl
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103
106
109
104
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108
1ne
110
111
112
113
114
115
114
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Xl=aX2
o X2aFPRY )
NsNI
GO TO 49
75 CALL AUX {RT,FRT)
76 ClL)=RT
___100  CONTINUE _
In=JK
33 ____RETURN
HO JK=JK+]1
. IF {(100=JK)75475+86
86 CALL AUX [RTLFRT)
FPRT=FRT
IF (L-1)81,89,81
.51 NO B2 I=2,.% ——
TEMaRT=C{TI~-1)
IF (AHS(TEM}=14,0FE=20)85,824H2
82 FPRTaFPRT/TE™
89 IF (ARS{FRT)=1,0€6=20)90491,491
90 IF (ABS(FPRT)=1,0E=~20)T76491,91
91 IF(IF) 33,R4433
8a GO TN NNg{192¢344950h97)
85 RT=RT+,001
.1,) GO TH RO
Enin
AIRFTC AlX
C AUXILTARY PROGRAM CALLEND RY ROGTFIwnER SURROUT [ne
C THIS SUBRNDUTINE RETURINS CONTRA, Tor THE RODTFINDER ROUTIME

_SUBRAOUTIME AUX{RT.FRT) = _
EXTFRWAL FNC
COMMONZINPUT/U{9) oV (5) o XK(8) ¢ UUPPRER g XLIANERy I X eI oPHI,JyeAX

598 FORMAT (4H WleylPELS.Ts4H w22y 1PEL5.7)

599 FORMAT {6H XmtlH=glPZ1547)

ADD FNRMAT [5H UENm 1PELS5,7)
601 FURMAT_{4H Zl=s1PELDaT])
A2 FORMAT (4H Z2=,1PE15,7)
HO3 FrNRmAT (5h PHI=,1PELS5,T)
Hild FNORMAT (G4HIRT=,1PEL5,T)

AX=RT
NIF=.0001
WRITF  (AgRU&) RT

IF (RT=1.) 25428435

25 PHI=V(J)=(HPPFR=XLNWER)+]1,=RT

ARTIFICTAL VALUE INTENDED Tt ORIVE ROUTFINDER TUWARD 4 RIINT
G TN 46

2K PHI=V{J)=(JPPER=XLDw=1)

G0 _I0_46 .

35 CALL RINTZ (ULT)sUPPERSDTIFEN" gy IND)

_CALL RINT2 (XLNWERZUT) g DIFFNC w2, 1ND)
WRITE [Aeb59K) WlewWw?
XNlMqewlew?
WRITE (As599) XNUM

o I =0,0001%XNUM

X=0,0025
5 VALUEsX&$({U[])®{RT=1¢)/(1e=U{I)}) * (la=X)=*(RT=1,)
IF (VALUFR (GELTOLJAND ¢ XeFD.040025) GO T} 50

NODBO600
WO0B0610
wl080620
«“0080AK30
wOORO64LD
WOOR0&SH
WOOB0K60
WOOHO&TO
HOOB0AB0
WOOHOA9 U
WOOHOTO00
YOOROTYIO
wOne0720
WUOBOT30
WODROT40
WOOROT50
WOOHOT60
WOOROTTO
WwoOB0OTHO
WOOROTYD
WOOBDHOO
wONBORYLO
40080820
NOOROR3D
WONKORL(
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IF (VALUE LT T, sAND X LEQ0.0025) GO T} 51
IF (VALUFLT,TOL) G Ty 39
X XLiWER=001
27 IF (X LELO.0) 60O THh 50
29 VALUEaX3:{UL])#{RT=1.)/(1.=U{T))} * (le=X}X¥x{RrT=1.)
IF [VALHELT.TNOLY GO T1) 60
XsX=0,41
GO T 27
32 CALL RINT2_(YLOWER, XLIWER) DTk FNC,Z1,TA0)
30 WRII® (mebd1) 71
IF_{UPPERJFLL1.,U) GO D 40
CALL RINT? (UPPERyLedeITFosFNC 72, 1IND])
WRITF (6y602) 22
41 NENSXANUM+ZL+Z2
WRITE LAy 600 ) tiEwN o
TF (ABS{XNUM) 46T elel0%NEN) G TH 3
GO T &5
40 272=0,0
G0 T 4Y
45 PH]'V‘JV)‘( X/ EN)
6N TN 46
3 PHI==,D01%2]
6h WRITE {64103) PHI

GI T R0
39 1m0,
GIETH 30
50 YLOWEK=D.0
TR TN 32
51 X=XL!IWER
TR T
&0 YLINWFEK=X
G T 32
BO_FaT=PHT _
®RETURN
EnD
SIHRFTC RInTZ LISt 2057001
C INTEGRATIIN SUBRIBUTIVE WRITTEN RY RURERT Lo ol ~Y
C DATE OF WRATT==UP =~ 2=-72-65 40870020
C . DATE NR SHRTE DECK = 2=72=h5 B TN040
SURKAUTINFE RINT2 (Agrd ey =Nk y IND) LY AL
& . e - 0BT
C JOSTOHUAD
C A = e LTelT 0F THE TNTEGRATION, OGS THGTO
c B o= NTHER LIAIF 0F THE INTEGRAT I, HOBTOOREG
[ Fw  EQRNR KUND {(ain=0TMpEnS Tiaal ), JORTI0GH
C FNC & FONSTLW SUMPRITGKAS, W R IOL00
C THE FUNCTION STaTEmSNT #oST AE = FUNCTION Fedl (X)0nT701 10
c - TTTT TRHEAE K TS FRE TWDERENDF T VARIARLE, WOBTNY 20
C F o= A8 VALIE OF THE INTEGRAL IS R=TURMED HERES, 40570 310
c Ing =2 AN IaDIZATDR AKICH IS RETUINED, EHL YN AN
C el [WDICATES THE I¥TEGRAL 0o wanT Cilmyrdhe RN
C HSImG 2810 [nikxval S, WU TOLAE
[ _NN=2ERY INDICATES THE INTEGRAL CONVERGRED wl~Dw YO R
[ THE FRUIK Rthh, YR TOYND
C WO T0O) i

NERIRLE PRECISlﬂNvr(31)'AA'*R'QIGNA,FN:'H”'“QVI;MIM'ROFF'AWS!A“(v”ﬂ

1~1
1H2
T3
1Ra
1%
1%A
| S0
| Bala]
1+9
190
1v¥1
192
193
194
19y
19%
197
Jos
145y
Z(H)
201
702
203
AL
AL
2115
267
70
200y
210

221
7724
279
2310
731
232
233
ALY
PEL)
244
237

44

23y
244
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WS
EMTN= 10000000,
AA=d

BRH=zH

HO=HA=AA

T 5% (FNCIAA)+FNT(HS) ) ®HD
P=1,

N 100 T=1,12

SIGMA=0,

10

Qml,

Pepu2,

CONT T )R .
SIGMARSTOMA+FENG {AA« (HOX0O)/P)
N=aD+2,

IE {0,LTe¥) GO I 10 _

TUI+1)=2(STIGMARHI )} /Pe 58T (1)
Fr=T

A4dK=],

Dy 249 Jdsl, ]

lLel=J+1

ALK=ALKEG o

Sq

—_— AU

C
204)

Yn

SIHFTE

Ll2=lel

TIL)=TlL+ D)+ (T O +1)=T{) )/ aal-1,)
CONT IatE

WRTITE (Ae99) (T(4K)eX<=],1)

FURMAT (1PR H16,7/HD15,7)

REFF-T

TIF (0aRS{T)GTelati=10) Rar/T
FqMINEDAAS (R)

AnSeT

IF (DARS{R)JLF A 14GMe3) 60 T 20U
CooliIee o . . I,
I=1-1

Inn=]15=]

HRITE (he9A)ru]nN

FIaMAT (1P015,7)

FeANS_ L.
RETURN

Enn

YA N

FHNMCTINN SURPRUGRAM AS KrUQUIKED AY ISTEGRATION

ROWT Tk

“0570210

w5 70240

JOS 02460

T TWORTG2TE

w3 TO280
dO570290

40570310
W9 T70320

WORTO330

WS 703540
W5 TN3AO
ELEYHENET
Wi 503 HO
WOSTO390
wiO)570400
ERLY TS ET

9O 10620

WOS 7047

WOB T4
R TORO0
15 0510

LS OLETL
CHCRT LY
A TNE S

THIS ROUTTIE RETHRES CONTROL Tl TAF IwTEGRATIHY SHKROUTIME

DHIRLE PRECISTNON FUNCTIUN FNCEX)
NI LE PRECISTHN X

LLUmmO L INPUT/UL9) a V(5] s XA (4) g HIPPER g XLUMER G TX T gty JpnX
CEX%e (DT} {AX=1)}/{Le=tU{T)) )2 (] ,n)=X) %% (aXx=1,)

KETLIRN
RN

tIhE

244
749
2uh
797
2y
2499
TR}
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PRIGRA™ 2 HETA OxIUR, A%An EST] ATES

MEAN EE
PARKAMETERS 1JF naTA PITHIK By A
a = 4U/{Ll=1))
H = REHIT

U o= #EAN, () AVAAGE VALt BiF THE ¢#RiomARTLITY TAa) A SYSTRs J0RKS

ALL DTHER VARTAALES ARQF DFrIaED as o PR

Clmd FTRPUTZUT9) o VI5) o XX{4) oUPPrERGXUTVER e I X g [y PHTy
Frimmat {12)

FURMAT (AFTDL5)

FORmAT (6F5.2)

FHRmAT {4r9.%)

FiirraT{FS,1)

FORGAT (FL)oap2(5XeF203)32(5XsFle3)e34er1tan}
KEADY (5,H85)) I1

REAH {SeHB0 ) JJ

READ {B.H%)) (K

READ (59000 (U{L)s131.11)
REAL {S5.901) (VvId)yJd=1sdi0)
READ [hy9u2) (X{{K) e (=1,44)
READ [(5,904) TX

M=l

{=20

1r=0

Y AT (=1 KK

O Hyy T=1.11

i BYR =l
F2ST=i{T)w(la+x{(L]))
HPpPER=AnInt{leyT=51)

XL nwERz{ T)a{la=x<£({<))

CALL BRT (i Xy Iy [F)

Az (T} RTX)/{Le)=U(T))
WRITF (ReynTu) U1y vIdY o XCTIRY en s TAPHI
GOt Tl

Ciat T Imtle

CrinT ol ip

caLL “xIT

Eiv)

GENERAT RONT ARk S oS aS ndinir

AUXTLIARY SUARDUTEnE FOLLB=S A8 anove

TRFRGAAT TN RN INE A0LL WS nS araVe

i
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SIAFTC FwC LIST
C FUNCTINN SUBPRGRAM AFLUNIRED Y TTEGRATIHN ROUTIwE
C THIS ROUTIWE RETUINS CHNTROL TN T e JTvTEGRATIAN SHRRGIIT Tme

DHIRLF PRECTISTON FUNSCITINN FNCTX)

nasLr PRECISTON X

CNMmON/ TNPOTZ {9 o VD) 9 XKLL ) g IPPER G XISy TX g Lo PHT g JyAX

FaCeXs®{ ((0(T)#ax)=1.0)/(Laa=11{I)))%{leNU=x)%n(aAX=1040})
& RETHRN

N

SENTRY wE AW

c PRUGRAK 3 Gadda PRAINORy MTHE ST TeaT-D

SIRFTC RONIT=2

G PARAMFTERS 11s GAmuA PRIUK Ay H

C A = DINT X ESTIwalen MTHF

I no= RODT

C hox [VITIAL SSTImATE OF RUNT U 67 0551 AY KOUTETSOER SUMRA] [
[ ALL OTHER vaR[ad4.2S ARE DEFTwrEn AN I PRIGRAC ]

CUHMN L FVPUT/V{9) o X<{ 3y JpLoHyTHETA
wuu FlleAT (12)
Y1 FIRGAT (9F85.2)
G1) FURMAT [(FhRe2e9XeF9¢2¢DXerlU0eTe9XorlV.7)

Reatr (5,900 JJ

REAN (54900) KK

wEAD (55901) (V({J)ed=1,JJ)

READ (5,901) (XK(K)pL=l,44)

Ne )

IF=i

N 599 K=l KK

=149

DH AN =l JJ

CALL GRT (NeHyIngTr)

WRITA (Ae910) VIJ) e XL{L)gHyTHITA
AOD CONT IR
59y ComiTInmle

caLL FXIT

Fin

C ROOTETSER SUARIUTING FHLLUWS AS Axuve

361
3k2
3A3
KY.T3
345
364
3ART
3IAR
36y
370
371
272
373
474
A4
47A
377
EYA
A1
Ar0)
3nl
3K2
3x3
iAna
3HS
AKRA
AnY
e
Ao
3909
A91
392
3Iv3
Auh
3995
G A
3w
3yH
49y
400
4000
&n2
403
ang
Lics

4Nk

407
40
anyg
a1n
411
412
4113
4l
LS
L1 A
4l
47 2
419
&)
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CHMMIINZTRPUT/V(Y) g X<{3) g J9R g Hy THETA

799 FORmAT (&

HOT =2 FlueT)

A Fuk~AT (LuXeFl2.n)

HJ1l FURMAT (5

XeFl2,4d)

#02 FORAAT (Z2AHODENNMTNATHIR TO N2AR ZFRIY)

83 FOXMAT (13
WRITE (4,
IF (=T GLF
I[F (RT4GF
RaRTexK (K
7eGGAmmA |
WRITE (6,
YaGANaA
WRETF (A,

(5XyR12.4))
199) <0
«De) G ¥ o

e2041)) Gt T11 140

)
RTgm}
KNy} 7
KT sUe)
ROLY Y

TF (Y.FLae) 63 T 3

THFTA=RV{ ]
WRITE (6,
Gir TH &
WHTITE (6
THFTA = V
ARTIFICLA
G Ty &
10 THFTA==-]1,
4 FRT=THETA
RETURN.

BN

o

SENTRY

y=(2/7Y)
H(3) THETO.Z,Y

RO2)
() =1e0er]

IovalLus fefendgn T

U=2040%< T

MYH GAam (FAD COUED

SHARFE PRiIGka4

RIi) =2

Yy

ORIVE RN FInoEk HHaRD

T EuE)

GAA,

321n)

[

FOLL s

CALILFI) MY

A RILj

ANXTLTAa<Y ROUTIne

421
422
423
426
42n
L2 A
“21
L2
429
LAn
431
L3)
413
434
4153
a5
437
H3A
43y
L4
L)
Py
443
L4gy
Lb5
LR
447
[/
Liy
4%50)
AN
49?2
454
Lnty
4ns
L5
4%
454
459
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RM-5084-NASA, A Bayesian Approach to Reliability Assessment,
B. L. Fox, RAND Memorandum, August 1966, 30 pp.

PURPOSE: To specify the parameters of a prior distribution for two cases: the

reliability of a unit that either performs satisfactorily throughout a mis-
sion or does not, and the failure rate of a unit that fails according to the
exponential distribution. Prediction of demand for spares is considered in

each case,

SCOPE: Bayesian analysis is an obvious approach to estimating reliability param-

eters from such mixed data sources as test results, information on analogous
components, and engineering estimates. The prior distribution, of necessity
subjective, is ideally based solely on the latter two sources. This study
gives a method for specifying the parameters of the prior distribution, re-
quiring only information corresponding to the most likely value of reliability,
and to the subjective odds that the error in this estimate is less than a given
percentage, Testing data are then merged with the prior distribution via Bayes
rule to obtain a posterior distribution. Roughly speaking, the spread of the
prior distribution is inversely proport&onal to the degree of prior belief and
determines how heavily the distribution will be weighted when it is combined
with test data. Tables of the parameters of the prior distribution, computed

according to the method described, appear in the Appendix.

BACKGROUND: This research was done by RAND for the National Aeronautics and Space

AG

Administration in connection with the Apollo mission reliability assessment
study. It should be of interest to those working on reliability estimation,
allocation of investment among system components to achieve maximum system

reliability, and stockage applications.
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